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THERMODYNAMIC CONSISTENCY AND 
CLASSICAL LIQUID STRUCTURAL THEORY 

K. I. GOLDEN* and N. H. MARCH 

Theoretical Chemistry Deparfment, University of Qxford, 5 South Parks Road, 
Oxford OX1 3UB, UK. 

(Received 20 August 1992) 

For classical liquids, with density-independent pair potentials &(r) which possess a Fourier transform, a 
full study is made of the Born-Green-Yvon equation which links pair correlations, via the three-particle 
correlation function g3, with the potential. I t  is shown that the shape of classical liquid structural theory 
is thereby determined, the pair potential 4(r)  being given as the difference between a function in r space 
involving both g3 and &(r), and a convolution of this same function with the Ornstein-Zernike direct 
correlation function. Into this equation, a decomposition of the direct correlation function is inserted, 
which is designed to retain thermodynamic consistency between virial and compressibility routes to the 
equation of state, when approximations to g 3  are introduced, as is presently inevitable in analytical work. 
Some aspects of the procedure proposed are illustrated using the example of the two-dimensional 
one-component plasma with an interaction satisfying Poisson's equation in two dimensions. 

KEY WORDS: Direct and three-particle correlation functions. 

1 INTRODUCTION 

Classical structural theories of liquids are, by now, rather numerous. Most of these 
can be thought of as invoking two basic relations: 

1) The definition of the direct correlation function c(r), due to Ornstein and Zernike 
(see Eq. (2.1) below) and 

2) The so-called force equation, or equivalently that member of the Born-- 
Green-Yvon (BGY) classical statistical mechanical hierarchy which relates the pair 
correlation function g(r) and the three-body function g3(rl, rI, r3) via the (assumed) 
density-independent pair potential +(r). 

In relation to (1) above, it is generally accepted by workers in the field that, far 
from the critical point, c(r) is related to + ( I )  at sufficiently large r by'+* 

c(r) = -+(r)/kBT; large r limit. (1.1) 

Any acceptable liquid-state theory must therefore contain Eq. (1.1) as a limiting case. 

* On leave from the University of Vermont, USA. 
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2 K. I .  GOLDEN AND N. H. MARCH 

With regard to point (2) above, closure of the BGY hierarchy is generally 
accomplished by ‘decoupling’ g3 in terms of g(r), the earliest decoupling in r space 
being that of Kirkwood3: 

Unfortunately, though useful for some purposes, the insertion of Eq. (1.2) into the 
force equation referred to in point (2) above leads to a theory relating g(r) to +(r) 
which is not quantitative, and in particular does not satisfy the limiting requirement 

Turning next to a central theme of the present paper, namely thermodynamic 
consistency, it is generally to be expected that, once g3 is approximated as in Eq. 
(1.2), for example, different routes to thermodynamics lead to different predictions. 
This difficulty was addressed by Kumar et aL4, who pointed out that thermodynamic 
consistency between the virial and compressibility routes to the equation of state 
could be maintained by dividing the direct correlation function into two parts: 

(1.1). 

c(r) = cp(r)  + c,(r). (1.3) 

These workers then demonstrated that with the choice of the ‘potential’ part cp(r) as 

then thermodynamic consistency in the above sense was ensured provided only that 
the ‘cooperative’ part of c,(r) satisfied 

cc(r) dr = 0. s 
The expression (1.4) for cp(r) is known to be valid both for pair potentials falling 

off faster than l /r3 in neutral liquids and for the one-component plasma (OCP). For 
the latter system, it is the charge-compensating background which validates (1.4), 
even with 4(r)  satisfying Laplace’s equation’. 

With the points (1) and (2) above, plus thermodynamic consistency, as guidelines, 
we shall now set out some general considerations on the shape of an acceptable liquid 
structure theory. In section 2 immediately below, an r space treatment of the force 
equation will be provided, motivated by the early work of H~tchinson~.’. Section 3 
will then be concerned with the form of the same approach, but with the admittedly 
restrictive assumption that the pair potential $(r) possesses a Fourier transform. In 
this case, the shape of the theory is shown to be settled by the force equation; though, 
of course, as set out above, to make the theory quite specific in the sense of providing 
and explicit relation between pair potential and structure factor, assumptions must 
be made about the three-body piece of the general theory. Section 4 returns to the 
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CLASSICAL LIQUID STRUCTURAL THEORY 3 

still important problem of extracting a pair potential from diffraction measurements 
of the liquid structure factor, while section 5 constitutes a summary plus some 
proposals for further work. In an Appendix the- example of a two-dimensional 
one-component plasma with lnr interaction is considered in some detail as an example 
to illustrate the present treatment. 

2 r SPACE TREATMENT OF BGY (FORCE) EQUATION 

Let us start by making points (1 )  and (2) above fully quantitative. First, the 
Ornstein-Zernike direct correlation function c(r) for a liquid of atomic number 
density n is defined by 

h(r) = c(r) + n h(r’)c(r - r’) dr’ (2.1) s 
where h(r) = g(r )  - 1.  This Eq. (2.1) can be solved directly for the Fourier transform 
?(k) of c(r), the result being quoted in Eq. (3.12) below. 

Turning to the so-called force equation referred to m point (2), this reads: 

In this equation, V(r) is the potential of mean force. For the classical liquids which 
are our sole concern in the present work, this is related by the Boltzmann form 

to the pair correlation function g(r).  
Hutch in~on~~’  appears to have been the first to exploit the expansion of 9, in 

Legendre polynomials. If we adopt the notation r = r31, R = r 2 , ,  r .  R = rR cos 8, 
then taking the scalar product of Eq. (2.2) with the unit vector iI2 yields, with 
p = ( k B T ) - ’ :  

Making next the Legendre polynomial expansion already referred to in the form 
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4 h. 1. GOLDEN AND N. H. MARCH 

the cos 6( = Pl(cos 0)) term in Eq. (2.4) removes by orthogonality all the terms in 
Eq. (2.5), on integration, except 1 = 1, to yield 

Reinserting U(R)  from Eq. (2.3) into Eq. (2.6), one then finds 

Integration can now be formally achieved as 

where 

We shall return to Eq. (2.8) at the end of the following section. 

3 k-SPACE FORM OF THE FORCE EQUATION 

The above argument rests only on the force equation and its solution and not on 
the existence of Fourier transforms of the potential +(r) or of the potential of mean 
force V(r). However, if it is assumed that 4(r)  has a Fourier transform, then it will 
now be shown that a good deal of insight can be added to the above discussion. 

Replacing U ( r , 2 )  in Eq. (2.1) by, essentially, Ing(r) from Eq. (2.2), one can take as 
starting point for the Fourier development below the equivalent form of the force 
equation : 

The next step then is to Fourier analyze the three-particle correlation function g3 as 
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CLASSICAL LIQUID STRUCTURAL THEORY 5 

With the admittedly restrictive assumption that 4(r) has a Fourier transform, we can 
also write 

(3.3) 

Forming the integral term in Eq. (3.1), one finds 

The Fourier transform of Eq. (3.1) then takes the form 

where 6(k )  is the Fourier transform of the total correlation function h(r) = g(r) - 1. 

3.1 

To motivate the rearrangement of Eq. (3.5) below, let us first separate out from g3 
the total correlation functions h and t by writing 

Rewriting of three-particle correlation function g3 

Then Eq. (3.5) can readily be shown to take the form 

The liquid structure factor S(k)  is then related to h(k) by 

S(k)  - 1 = n&(k) ( 3 4  

so that Eqs. (3.7) and (3.8) provide a direct k space relation between potential &k), 
structure factor S(k)  and the part t of the three-particle correlation function separated 
out in Eq. (3.6). What we shall emphasize below is that, without making an 
approximation to t as yet, Eq. (3.7) already fixes the general 'shape' that a correct 
liquid structure theory, based on a model where the pair potential 4(r) has a Fourier 
transform, must take. All subsequent approximations should then be inserted in a 
form which (a) preserves this shape and (b) whenever possible also ensures thermo- 
dynamic consistency. 
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6 K .  1. GOLDEN AND N. H. MARCH 

3.2 Form of equation for  the potential: introduction of direct correlation function c(r) 

To expose in the simplest fashion the shape of the theory based on Eq. (3.7), let us 
define the summation over q appearing there as 

(3.10) 

where evidently the quantity E(k) is defined by 

E ( k )  = L(k) + Z(k). (3.1 1)  

3.2.1 To put 
Eq. (3.10) into r space, one notes from the Ornstein-Zernike definition of c(r) in Eq. 
(2.1) that 

r space form of pair potential in terms of direct correlation function 

Hence, writing l/S(k) appearing in Eq. (3.10) as ( 1  - ?(k)), Eq. (3.10) becomes 

(3.12) 

(3.13) 

Inverting the Fourier transform in this equation, and noting that the final, product, 
term in Eq. (3.13) becomes a convolution in r space, one is led to the main result of 
the above analysis of the force equation as 

4 ( r )  
~ = - E(r) + n c(r')E(Jr - r'l) dr'. 
k, 7- 

(3.14) 

This Eq. (3.14) reflects the general 'shape' of classical structural theory for the case 
when &(r) has a Fourier transform; Eqs. (3.10) and (3.14) being then equivalent forms 
of the theory. 

This is now the point at which to return to the thermodynamically consistent 
decomposition in Eqs. (1.3H1.5). Eqs. (3.10) and (3.12) then lead to 

~ = - E(k)[1 - ?,(k) - ?=(k)] 
k,T 

(3.15) 
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CLASSICAL LIQUID STRUCTURAL THEORY 7 

and 

(3.16) s J' 4(r )  
k B T  
~ = - E(r) + n cp(r')E(r - r') dr' + n cc(r')E(r - r') dr'. 

What is to be stressed about this form of Eq. (3.14) is that cp(r), from Eq. (1.4), 
already builds in derivatives of g(r) with respect to density n, as well as r derivatives. 
Since it is known from the early work of Schofield' that integrals on g 3  are related 
to ag(r)/an, one has in this way already inserted some limited knowledge about g3 
into Eq. (3.16), even before committing oneself to an approximate form for E(r).  

3.3 

The r space treatment of section 2 did not, of course, need any assumptions about 
the existence of Fourier transforms of 4(r )  and U(r). But it is now of interest to 
assume this, and to recast Eq. (2.8) into a form which can be compared with Eq. (3.10). 
From Eq. (2.8) one can then write 

Relation to Fourier transform of potential of mean force 

Direct comparison of Eqs. (3.17) and (3.10) then yields 

E(k)  = - S ( k ) D ( k )  + (3.18) 

This is therefore an alternative form for the three-body piece E into which approxima- 
tions for g3 can be introduced. In this context, it is worth noting that by taking the 
In of Eq. (2.3) and writing g = 1 + h, one can expand the In to find the approximation 

(3.19) 

This form will be useful to insert in Eq. (3.18) for comparison with another 
approximation to be introduced below. 

4 RELATION TO INVERSE PROBLEM OF EXTRACTING PAIR 
POTENTIAL 4(r )  FROM DIFFRACTION MEASUREMENTS OF LIQUID 
STRUCTURE 

It is now attractive to view Eq. (3.16) as a starting point for extracting a potential 
4(r)  from diffraction measurements on liquid structure; this defines the so-called 
inverse problem posed in the work of Johnson and March'. While using computer 
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8 K.  I .  GOLDEN A N D  N. H. MARCH 

simulation within the framework of an iterative predictor-corrector method to bypass 
the need to approximate y3, Reatto and co-workers" have brought this inverse 
problem to full fruition for liquid Na near freezing'', it remains of considerable 
interest to use classical liquid structure theories to perform this inversion for other 
cases. Equation (3.16), we propose, may be the basis for this for &r)'s which have 
Fourier transforms, such as those given by pseudopotential theories of effective 
ion-ion interactions in simple liquid metals like the alkalis. 

4.1 Zeroth order approximations 

Though it is not the purpose of the present paper to investigate this inverse problem 
in any numerical detail, it is relevant here to mention, as possible starting points in 
a future numerical study of Eq. (3.16), what zeroth order approximations might be 
available. 

The simplest procedure which comes to mind is then to suppose that one has 
experimental data not only for S(k),  and hence g(r), but also for the density derivative 
dyldn. From S ( k )  one can construct c(r) by Fourier transform of Eq. (3.12). But one 
can also obtain cp(r )  from the experimental data mentioned above. If c,(r) = c(r) 
- cp(r)  thereby constructed from experiment were found to be small, one could 
immediately extract a useful approximation to 4 ( r )  from Eq. (1.4), by also inserting 
experimental data for cp(r)  2: c(r)  on the left-hand side. 

If, however, as one will normalIy expect to find, c,(r) extracted from experiment is 
not sufficiently small to be neglected, at least it will be shorter range than cp(r),  since 
Eq. (1.4) already tends to -4(r)/kBT at large r (see also further confirmation from 
the example presented in the Appendix). Under these conditions, the Ornstein-Zer- 
nike idea of Taylor expanding E(r') about the point r and retaining low-order gradient 
contributions only may afford a useful way of handling the last term (only!) in Eq. 
(3.16) in subsequent applications. But then, one has to ask as to the form of E(r) to 
insert in Eq. (3.16). 

4.1.1 Putting c,(r) = 0 as a zeroth-order approx- 
imation leads to a potential $(r)  directly from Eq. (1.4). This approximation is clearly 
consistent with the requirement (1.5) for thermodynamic consistency. Thus it is of 
interest lo ask what are the implications for choice of E(r) consistent with this 
assumption. In principle, this question is readily answered by combining Eq. (3.16), 
after putting c,(r)  = 0, with Eq. (1.4). This leads to an integral equation to determine 
this 'zero order' approximation, say €,Jr). If (see also Eq. (A2) of the Appendix) we 
write Eq. (1.4) in terms of a function J ( r ) ,  then one finds immediately: 

Possible upproximations to E ( r )  

Inserting c p ( r )  using c(r) ,  as well as J(r ) ,  from experiment yields an integral equation 
to solve for E, .  I t  is then tempting to estimate the size of the omitted term involving 
c,(r) in Eq. (3.16) by inserting the approximation E 2: E,. Unfortunately, however, if 
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CLASSICAL LIQUID STRUCTURAL THEORY 9 

this term proves to make a sizeable correction to &r) from Eq. (3.16), one will need 
to refine Eo(r).  Therefore it is useful to consider another route to E(r)  afforded by 
currently still useful liquid state theories. 

While the most elementary choice E(r)  ‘5 h(r), which amounts to putting X = 0 
in Eq. (3.11), or J ( r )  = 1 in Eq. (4.1), leads back to the relatively crude random phase 
approximation, one might choose as an alternative starting point to Eo(r) discussed 
above the hypernetted chain (HNC) approximation. This corresponds to writing the 
equation for $(r)/kBT in the form 

= h(r) - c(r)  = n c(r’)h(r - r‘) dr’ s 4(r)  - W) 
kBT 

In k space this becomes 

(4.2) 

This is readily shown to be equivalent to the choice of E(r )  in Eq. (3.14) as having 
Fourier transform 

Again, this choice would allow experimental input into Eq. (3.16), not only through 
cp(r)  but also through E(r),  since all the quantities appearing in Eq. (4.4) are accessible 
from diffraction measurements of S ( k )  for the state under consideration. 

5 SUMMARY AND PROPOSALS FOR FURTHER WORK 

The main results of the present work are embodied in the equivalent Eqs. (3.10) and 
(3.14). These settle the ‘shape’ of the classical liquid structural theory. Inevitably, for 
analytical work as opposed to computer simulation, the function E(r) appearing in 
Eq. (3.14) will have to be approximated in general. However, for the two-dimensional 
OCP with Inr interaction, and for the particular coupling strength r = 2, E(k) is 
completely determined by the pair function of Jancovici plus the Fourier transform 
of the Inr interaction. This may be important for the future in allowing a fully 
quantitative assessment of the usefulness of specific decoupling approximations for 
the correlation function g3 .  

It should be cautioned, however, that definite restrictions apply to the central Eqs. 
(1.4) and (3.14). Eq. (1.4), derived by Kumar et al. from the requirement of thermo- 
dynamic consistency, is based on a density-independent pair potential description. 
However, for the BGY (force) equation itself, no such constraint exists. 

Let us reiterate also that Eq. (3.14) has been derived on the assumption that q(r)  
has a Fourier transform. In insulating liquids like argon, one should therefore return 
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10 K. 1. GOLDEN AND N. H. MARCH 

to the fully r space treatment of section 2, with the central Eq. (2.8) derived there. 
However, whereas the potential q ( K )  IS roughly described by a Lennard-Jones 6-12 
law, the potential of mean force U ( R ) ,  derived say from the measured pair function 
g(r)  using Eq. (2.3), exhibits pronounced oscillations. There must evidently be massive 
cancellation, in this liquid, in Eq. (2.3) for q(R) ,  between U ( R )  and the contribution 
involving F ( R ,  s), which in turn comes from g3. It follows that accurate representation 
of g3 is essential in such a case. I t  might therefore already be interesting, when suitable 
measurements of g ( r )  under pressure become available, to contemplate using Eq. (1.4) 
directly, with cp(r)  2 c(r) assumed, and experimental data inputted for c(r). But we 
suspect from the example of the two-dimensional OCP in the Appendix that Eq. (1.4) 
‘overscreens’ the potential q ( r )  at small r .  and so such an analysis may not be 
quantitative deep in the core. However, the bowl of the potential, as well as its tail, 
might be quantitatively represented already, and, after all, q ( R )  is reflected directly 
in U ( R )  deep in the core. 

Finally, though simple metals like liquid Na have density-dependent potentials, it 
will be of interest for the future, because in pseudopotential representations q ( R )  does 
have a Fourier transform, to relate the basic structural Eqs. (3.10) and (3.14) to such 
electron theory considerations. This should lead in such a case to much deeper insight 
into the form of E ( k ) .  We plan numerical studies on both the homogeneous electron 
liquid (classical OCP in three dimensions) and on liquid Na, using the present study 
as the starting point. 
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CLASSICAL LIQUID STRUCTURAL THEORY 11 

APPENDIX 
TWO-DIMENSIONAL ONE-COMPONENT PLASMA (OCP) 

D-DIMENSIONAL GENERALIZATIONS AND EXAMPLE OF 

As Rashid et a1.’ point out, the generalization to D dimensions of the potential part 
c,r) of c(r) can be effected as 

This result evidently reduces to Eq. (1.4) for D = 3. The limiting form (1.1) follows 
in D dimensions also from Eq. (Al) at sufficiently large r. Equation (Al) is valid for 
the two-dimensional OCP with q(r )  K Inr, to be discussed below. 

A1 

Writing cpr) in Eq. (Al) for D = 2 as 

Two-dimensional OCP with Coulomb interaction satisfying Poisson ‘s equation 

and utilizing the result of Jancovici” for coupling strength r = @’ = 2, (2 and p 
being the charge and thermal energy per unit length), namely 

g(r) - 1 = h(r) = -exp ( -nnr’) (A3) 

one finds the result for J in Eq. (A2) as 

J(r) = 1 + h(r) 1 - 2nnr’ + -__ [ 2 

Thus, in addition to any nodes in cp(r), cp(r) has nodes arising from J(r) at 

and 
(a) r = 0 since h(r = 0) = -1 

(b) r ,  given by 

Evaluating c,(r = 0) from the Ornstein-Zernike relation (2.1) yields also 

- 1 = c,(r = 0)  + h(r)c,(r) dr + h(r)c,(r) dr. s s  
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I2 K. 1. GOLDEN AND N. H. MARCH 

Inspection of the plot of Rashid et al. shows that c,(r = 0) - - 1, ie., the sum of the 
two integrals is small. The first integral is, in fact, calculable from Eqs. (A2), (A4) and 
(A3) but we shall not give further detail. 

For the present example, we note that the long wavelength behaviour of S(k)  can 
be calculated from the compressibility rule and fluctuation-dissipation theorem to be 

kZ k4 
S(k)  2 7 - - (1 - :): k 4 0, 

K D  K: 

which is derivable from Eq. (A3) for the special case K’ = 2. Here KD denotes the 
Debye wave number: K g  = 2n2’ng. 

Furthermore, the total correlation function h(r) can be obtained at small r as 

h(r) = -- 1 + (r/R)r; r -+ 0 (A8) 

which again is compatible with Jancuvici’s result (A3) for the case r = 2. In Eq. (A8), 
R is related directly to the areal density n. 

Some progress can be made with the summation C ( k )  introduced in the main text. 
When Eq. (3.9) is combined with the decoupling approximation (A1 1) below, the long 
wavelength formula is found to be 

This reproduces the exact result (A.7) when substituted into Eq. (3.7) via (3.9). 
To conclude the Appendix, howeker, let us return to the central question of the 

three-particle piece of the BGY equation for all k .  This is subsumed into &k), which 
in turn is related to the Fourier transform of the pair interaction potential q(r )  by 
Eq. (3.10). We note here that since the present model is characterized by 

then 

k 2  
2zg2 

- -- E(k)  = S(k) .  

But for = 2, S(k)  - 1 is given by the Fourier transform of Eq. (A3), and hence E(k) 
is known in exact form for this particular coupling strength = 2. This is what one 
is led to from the BGY equation, once both &k) and S(k)  are known. 

As to the three-particle correlation function itself, and in particular the part denoted 
by t in the main text, a useful closure approximation is given in this model problem by 

t(k - q, q) = h(k - q)h(q) + h(k - q)h(k) + h(q)h(k) + nh(k - q)h(q)h(k). (A12) 
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Though, of course, Eq. (A12) is certainly approximate for a general coupling strength 
r, it can be shown that it satisfies the compressibility sum rule for all r. In the same 
context, it is worthy of note that in this same model one has the exact r e ~ u l t ' ~ . ' ~  for 
the pressure p :  

One expects that the decomposition of c(r) into cp(r) in Eqs. (A2) and (A4) at r = 2 
and cc(r), subject only to Eq. (1.5), will lead back to Eq. (A13) for r = 2. 
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